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Abstract

In this study we used the Kozeny—Carman (K-C) equation as a semi-physical model for estimating the soil permeability
using data derived from microscope observations. Specific surface areas and porosities were obtained from two-point correla-
tion functions derived from scanning electron microscope images of thin sections using a magnification of 50 and a resolution of
1.88 wm pixel "'. Permeabilities were predicted using two published (‘Ahuja’ and ‘Berryman’) and one generalized variant of
the K—C equation. The latter model was similar to the Berryman variant, but used a free parameter C rather than a porosity
dependent formation factor. All K—C model variants were optimized on measured permeabilities. The Ahuja and Berryman K—
C models performed relatively poorly with R? values of 0.36 and 0.57, respectively, while the generalized model attained R
values of 0.91. The parameter C was strongly related to texture and, to a lesser extent, particle density. The general model still
required measured surface area and porosity. However, we showed that it was possible to estimate these parameters from texture
resulting in an R* of 0.87. A fully empirical model that did not assume K—C concepts performed slightly worse (R* = 0.84). The
results indicate that after developing the model using microscope information, only macroscopic data are necessary to predict
permeability of soils in a semi-physical manner with the K—C equation. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Various techniques are presently available to
estimate saturated and unsaturated soil hydraulic
properties from surrogate data. Known as pedotrans-
fer functions, these methods commonly predict the
hydraulic properties from macroscopic parameters
such as texture and bulk density. Most pedotransfer
functions are empirical and do not give much insight
into the physical relations among soil properties.

A limited number of pedotransfer functions exist
that have some physical basis. For example, the

* Corresponding author. Tel.: +1-909-369-4844; fax: +1-909-
342-4964.
E-mail address: mschaap@ussl.ars.usda.gov (M.G. Schaap).

models by Haverkamp and Parlange (1986), Arya
and Paris (1981), and Arya et al. (1999a,b) derive
the water retention or hydraulic conductivity charac-
teristics through shape similarities between pore and
particle distributions. Mualem (1976), among others,
developed a pore-size distribution model to infer the
unsaturated hydraulic conductivity from the water
retention characteristic. Most physical models are
based on simple capillary tube representations of
porous media. Tuller et al. (1999) and Or and Tuller
(1999, 2000) recently developed a more realistic
model for pore space geometry by describing the
porous medium in terms of angular and slit-shaped
pores. This model accounts for both adsorptive and
capillary forces and accurately described retention
and flow through fractured media. Because fluid
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Nomenclature

List of symbols and abbreviations

B void ratio

o) total porosity

b effective porosity

o apparent porosity

] dynamic viscosity (kgm ™' s™")

p fluid density (kg m )

T tortuosity

c geometry factor in Eq. (6)

h resolution (pwm pixelfl)

k permeability (m?)

m exponent in Eq. (8)

r one-dimensional  correlation  distance
(pm)

s specific surface area (um ')

u horizontal lag distance in correlation
function (pixels)

% vertical lag distance in correlation
function (pixels)

by horizontal distance in SEM image (pixels)

Xmax maximum horizontal distance in SEM

image (pixels)

y vertical distance in SEM image (pixels)

Vinax maximum vertical distance in SEM image
(pixels)

A fitting parameter in Eq. (5) (m?)

B fitting parameter in Eq. (5)

C lumped parameter in Eq. (9)

F formation factor in Eq. (7)

G pore geometry factor

K saturated hydraulic conductivity (m s~ ")

N number of samples

Ry hydraulic radius of the void space (pm)

Ry hydraulic radius of the particle space (jum)

R, characteristic pore size, Eq. (21) (p.m)

Ry long-range correlation distance (pm)

R.(r) one-imensional correlation function

R (u,v) two-dimensional correlation function

R, ,(u,v) normalized two-dimensional correlation
function

SEM  scanning electron microscope

TPCF  two-point correlation function

Z(x,y) SEM image

RMSE root mean square error

flow and retention are essentially microscale
processes, all physically based models must rely on
microscopic relations among pores, particles, and/or
surface areas. However, few models use direct
observations at the microscale because measurements
are generally impractical, difficult, expensive, or even
impossible. Instead, they rely on macroscopic proxies
to parameterize microscale phenomena.

Microscope observations of thin sections of soils
and rocks are the traditional domain of micromorphol-
ogists. Observations often result in qualitative data
about pedological properties and processes, although
quantitative measurements have also been performed
(e.g. Bouma et al., 1979). Vogel (1997) used
microscope observations of serial thin sections to
establish the three-dimensional pore distribution and
-connectivity of two soils. Using the same technique
supplemented with pore-network modeling, Vogel
and Roth (1998) derived hydraulic characteristics
and compared these to measured unsaturated conduc-
tivities. Quiblier (1984) and Berryman and Blair
(1987) used digitized images of thin sections of

sand- and limestone to predict permeability. Both
studies used the images to derive two-point correla-
tion functions (TPCFs), which provide the spatial
correlation structure of the pore space. Berryman
and Blair (1987) and Blair et al. (1996) subsequently
calculated specific surface area and porosity from the
TPCFs and used these to predict permeability with the
Kozeny—Carman (K-C) equation. Quiblier (1984)
and Adler et al. (1992) used TPCFs in conjunction
with numerical simulations of flow at the pore-scale
using the Navier—Stokes equation.

The goal of this study is to investigate whether the
K-C (Carman, 1939) equation can be used as a physi-
cally based model to predict the permeability of soils.
The original definition of the K—C equation is some-
what impractical because it requires data such as pore
geometry, pore tortuosity, porosity, and specific surface
area. We will test two K—C variants that make simplify-
ing assumptions using one (Berryman and Blair, 1987)
or two (Ahuja et al., 1984) adjustable parameters. A
third more general K—C variant has one adjustable
parameter that we will relate to microscopically
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derived predictors, macroscopic predictors (texture,
soil density), or both. The microscopic variables
used for the K-C equation will be derived from
TPCFs of scanning electron microscope (SEM)
images of thin sections. Because such microscale
variables are difficult to observe, we will also develop
a model that estimates the microscopic K-C para-
meters from macroscopic predictors. This model
will be compared with a fully empirical model that
does not use the K—C concepts but estimates the
permeability directly from macroscopic predictors.

2. Theory
2.1. The Kozeny—Carman equation

The saturated hydraulic conductivity, K (ms "), is
determined by porous medium as well as the fluid
properties

K =Py (1)
n

where p is the fluid density (kg m ?), g is acceleration
of gravity (m s ?), and 7 the dynamic viscosity of the
fluid (kg m ' s~"). The permeability, k (m?), depends
only on the characteristics of the porous medium and
will be used instead of K, for the remainder of this
study. The permeability can be expressed using
Poiseulle’s law as
R2

k= G @)
where R (m?) is a pore radius. The factor G is equal to
8 for circular tubes, but has other values for different
pore shapes (e.g. Carman, 1939; Schlueter, 1995).

Poiseulle’s law holds for straight cylindrical pores
and as such cannot be applied directly to media having
finite, tortuous, interconnected, and/or irregular pores
of different sizes. Several of these complications are
accounted for in the K-C equation (Carman, 1939),
which is given by

- ¢
G

where ¢ is the total pore volume and 7 is the tortuosity
given by the ratio of the microscopic and the macro-
scopic flow path. Central to the K—C equation is the
concept of hydraulic radius of the void space, Ry,

k 4R%, (3)

which is defined as the pore volume divided by wetted
area. In the case of full saturation, R}, can be defined
as the ratio of the porosity and the specific surface
area, § (mfl)

Ryy = dls “4)

The hydraulic radius thus characterizes a porous
medium with a conductive term, ¢, and a frictional
term, s. For a circular pore one finds R = 2Ry, thus
explaining the factor 4 in Eq. (3).

While the K—C equation allows the calculation of
permeability of porous media having irregular pores,
it is also subject to controversy. Dullien (1992, p 257)
states that the K—C equation is only valid for media
consisting of spherical particles of uniform size.
Prediction of the permeability using Eq. (3) may
thus strongly deviate from measurements for porous
media having relatively broad particle size distribu-
tions. In addition, the approach assumes that the
hydraulic radius represents the effective pore diameter
of the medium. After considering a number of differ-
ent pore geometries, Schlueter (1995) concluded that
use of Ry, does not lead to systematic underprediction
or overprediction of pore permeabilities. Hillel (1998,
p 191), however, argues that the hydraulic radius may
not be representative for media with bimodal pore size
distributions, such as cracked clays. Pore connectivity
is not addressed in the K-C equation since the
equation in essence assumes that the porous medium
has only circular pores of radius 2Ry,,. Dullien (1992, p
258) demonstrated that having two parallel pores of
different radii yields higher permeabilities than
inferred from the hydraulic radius. Conversely,
serially connected pores with different radii yield
lower permeabilities. It is therefore unlikely that the
factors ¢,Ryy, G, and 7> alone can adequately capture
the permeability characteristics of all porous media.

The K-C equation is often not immediately applic-
able since G, 72, and s are generally not known.
Dullien (1992, p 256) argued that 72 often serves as
fudge factor that matches predicted to observed
permeabilities and is often not independently
observed. While s may be measured with gas adsorp-
tion or ethylene glycol monoethyl ether (EGME)
methods, these methods also include nanometer size
pore structures. From Eq. (2) it is clear that, as long as
continuous micron-sized or larger pores are present,
nanometer-sized pores are unlikely to affect flow on a
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macroscopic scale. Hence, gas adsorption and EGME
methods may yield hydraulic radii and permeabilities
that are far too small.

The importance of the scale on which s and ¢ are
determined was recognized by Berryman and Blair
(1987). Using SEM microscopy on thin sections of
sandstone, they showed that s and, to a lesser extent,
¢ increased with magnification. Using a similar
methodology for soils, Lebron et al. (1999) showed
that the hydraulic radius decreased substantially with
increasing magnification. Berryman and Blair (1987)
reasoned that pore-wall features smaller than about
1% of the radius of a characteristic pore size do not
significantly affect flow. This in turn would impose a
limit on the maximum magnification necessary for
determining hydraulically relevant s from SEM
images.

Two variants of the K-C equation have been
proposed in attempts to lessen problems with surface
area and tortuosity. Ahuja et al. (1984) used the
concept of effective porosity, ¢., which is that part
of the porosity that contributes most to fluid flow.
They defined the effective porosity as the total
porosity minus the water content at —33 kPa. This
approach thus incorporates only the larger pores
with an equivalent capillary radius greater than
4.5 pm. Ahuja et al. (1984) further simplified the
K—C equation by assuming that s and 7° varied with
some power of ¢., thus yielding the approximation

k=AdY Q)

where A and B are empirical constants that vary
considerably with soil type (Ahuja et al., 1989;
Messing, 1989).

A second variant of the K-C equation was
proposed by Berryman and Blair (1987) and Blair et
al. (1996) who incorporated a formation factor F

L

— - R 6
cFs2  ¢cF ™ ©

in which ¢ is a geometry constant equal to 2 that
results from the fact that G in Eq. (3) equals 8. The
formation factor follows from the analogy between
fluid flow and electrical current through a medium.
It is defined as the ratio of the pore fluid electric
conductivity and the bulk electric conductivity of a
saturated porous medium (e.g. Bear, 1972, p 113)

and can be related to tortuosity and porosity (e.g.
Walsh and Brace, 1984)

F=— @)
¢
To use the K—C definition given by Eq. (6), we still
need to measure or approximate F. Adler et al. (1992)
and Blair et al. (1996) estimated F using Archie’s law,
according to

F=¢™" (®)

where m assumes values between 1.5 and 2 for sand-
stones, unconsolidated sand, and synthetic media
(Blair et al., 1996; Bear, 1972, p 116).

The data obtained in this study allow us to evaluate
the K-C variants given by Egs. (5) and (6). In
addition, we will generalize the K—C equation given
in Eq. (3) by lumping the effects of all unknown
factors (pore geometry, -tortuosity, -connectivity)
and the constant 4 into one single parameter C

3

k=§=%% ©)
where ¢, is an apparent porosity analogous to the
effective porosity used in Eq. (5). Contrary to the
parameter F in Eq. (6), which is interpreted in terms
of porosity and tortuosity (cf. Egs. (7) and (8)), the
parameter C is free to be empirically related to various
microscopic and macroscopic soil parameters.

2.2. Obtaining microscopic variables from SEM
images

Two-point correlation functions are instrumental in
this study for obtaining the surface area and other
microscopic statistics of thin sections. Although we
used SEM, the general principles outlined here can
also be applied to images obtained with light micro-
scopy.

Determination of a two-point correlation function
requires a binary image, i.e. an image where the void
and particle space are unequivocally defined. SEM
images typically have a range of gray scale values
owing to different atomic masses of the elements
present in the thin sections. Gray values are normally
bimodally distributed, such as depicted for two soils
in Fig. 1. The left hand peak of soil 1 is caused by the
hydrocarbon-based epoxy resin that fills the voids.
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Fig. 1. Histograms of two SEM images. The position of the gray value thresholds is indicated with the dots. The graphs were passed through a

low frequency bandpass filter to remove high frequency noise.

The right hand peak of soil 1 is caused by the particles
containing heavier elements (Si, Ca, etc). By setting a
threshold gray level, one can separate the pixels
belonging to the void space from those belonging to
the particles, thus yielding a binary SEM image.

Let Z(x,y) represent a binary SEM image with
Z(x,y) =1 for pixels belonging to voids, and
Z(x,y) = 0 for pixels belonging to particles. The
integers x and y represent the horizontal and vertical
coordinates of a pixel within the image according to
l=x=xpand 1 =y =y .., where x, and yn.x
are the image sizes (1024 and 800 pixels,
respectively). The apparent porosity, ¢,, of the SEM
image is calculated as the average of Z(x,y)

by = Z(x,y) (10)

Due to the finite resolution of the images, the appar-
ent porosity is usually smaller than the total porosity
because pores smaller than the detection limit are not
resolved.

Two-point correlation functions account for spatial
structure in the images by considering each possible
pixel pair (e.g. Berryman, 1985)

R.(u,v) = Z(x,y)Z(x + u,y +v) (11)

where u and v are the lag distances in the x or y
direction subject to the conditions: 0=u =
Xmax — 1, and 0 = u = y_ .. — 1. The special case of
a zero lag distance, R, (u = 0,v = 0), yields ¢,, since
Z(x, y)2 = Z(x,y) for binary pixels (i.e. 1°=1 and
0? = 0). For increasing lag distances the correlation
decreases to R (u,v) = q’)ﬁ for completely uncorre-

lated pixels. By setting Z(x,y) = 0 for void pixels
and Z(x,y) = 1 for particle pixels one can compute
the correlation function of the particle space. While
the definition of Eq. (11) is simple, its calculation is
computer intensive. Appendix A explains how R (u,v)
may be computed quickly using Fast Fourier Trans-
forms. Correlation functions may be easier to interpret
visually when they are normalized according to (e.g.
Quiblier, 1984)

[Z(x,y) = PallZ(x + u,y +v) — ¢,]

R n(u,v) =
: d)a - d)g
(12)
which is equivalent to
R.(u,v) — ¢
Rop(uv) = RloV) = (13)
d)a - ¢a

In this caseR_,(u,v) is equal to one for u = 0 and
v = 0, and equal to zero for uncorrelated distances.

The matrix R,(u,v) can be used to test the degree of
isotropy of the SEM image by comparing the vectors
R,(0,v) and R, (u,0). We found that our images were
always sufficiently isotropic for the purposes of this
study, and averaged R,(u,v) into a one-dimensional
vector, R,(r), using a procedure outlined in Berryman
(1985). The distance r is relative to u = 0 and v = 0,
where u = r cosy and v = r sinvy; with y representing
the angle with the u axis.

The surface area, s (p,mfl), of the image can be
derived from the slope of R,(r) by taking the limit
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(Berryman and Blair, 1986)

. dRZ(r)
lim =
rl0 dr

—s/4 (14)

In this study we will compute s in a first order
approximation

o THR() — R(O)
h

where 4 is the resolution (pixel size in wm). Higher-
order approaches do exist (e.g. Montemagno and Ma,
1999) that yield s that are usually substantially higher
than those provided by Eq. (15). We did not use such
higher order approaches because they provide s values
that correspond more or less to higher resolutions;
rather we believe that s and ¢, should be derived at
the same scale.

Berryman and Blair (1987) established minimum
and maximum bounds for s as follows

7 4,

=5 =
xmaxymax h

as)

(16)

=

Both bounds represent highly ordered arrangements
of pixels that are unlikely to occur in soils. The
minimum bound is obtained by concentrating all
void pixels into one circular pore. This value turns
out to be extremely small and represents the case
where the sample displays the maximum amount of
order. The maximum surface area is the case where all
pixels are surrounded by voids, which requires an
unrealistic checkerboard pattern for ¢, = 0.5. We
defined a more practical maximum surface area by
considering a completely random arrangement of
particle and void pixels. Pixels in this case have no
correlation at any lag except zero and have the least
amount of order. Therefore, the correlation will drop
immediately from ¢, to ¢> (cf. Eq. (11)). Following
Eq. (15), the maximum surface area is then given by

2
s = 4(¢a - ¢a) (17)
h

Following Eq. (4), the hydraulic radius void space,

Ry, is computed as

_$

N

Ry, (18)

Notice that we substituted ¢, for ¢, and derived s
from Eq. (15). To keep our approach consistent, we

will use ¢, in all three K—C variants. We also point
out that both ¢, and s, and therefore Ry, depend on
the magnification of the SEM images (cf. Berryman
and Blair, 1987; Lebron et al., 1999). Ultimately, ¢, is
bounded by ¢, but s may increase much stronger with
higher magnifications, resulting in smaller Ry,. The
results in this study thus depend on the invoked
magnification (50).

In analogy to the hydraulic radius for the void
space, it is possible to characterize the particle space
in a similar fashion. Because the surface areas of the
void and particle spaces are the same, the ‘hydraulic
radius’ of the particle space, Ry, should be
Ry= % (19)

s

Coincidently, the ratio of Ry, and Ry yields a
relative measure of the pore and particle sizes that is
dependent only on ¢,

— th — d’a
Rhs 1= d)a

This ratio is reminiscent of the void ratio used by
Arya and Paris (1981) and similar to a packing para-
meter used by Haverkamp and Parlange (1986). These
two studies, however, focused on water retention
rather than hydraulic conductivity and used the total
porosity instead of an apparent porosity.

Berryman and Blair (1987) proposed a characteris-
tic pore size, R., defined as the intersection of the
tangent of the correlation function at lag 0 and the
horizontal line given by (/)i

Ay = b))

Rc = f = 4th(1 - d)a) = 4Rhs¢a (21)

B (20)

It follows that R, is identical for the void and solid
spaces, and strongly related to the hydraulic radii.

Egs. (18)—(21) provide information about charac-
teristics of the porous medium derived from lag 0 and
I in the correlation function, R (r) (cf. Egs. (10) and
15). Correlations at greater lag distances may also
influence C because they provide information about
larger-scale soil structure. Long-range information in
R,(r) may be derived from the distance where correla-
tion in R () is no longer present (i.e. R, (r) = d)i or
R, ,(r) = 0). Because R, ,(r) did not always reach O
but remained at a very small positive value, we
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Fig. 2. Textural distribution of the 35 soils used in this study (USDA classification). The large dots depict the two samples in Fig. 3. S: sand, 1S:
loamy sand, sL: sandy loam, scL: sandy clay loam, sC: sandy clay, L: loam, siL: silty loam, Si: silt, sicL: silty clay loam, siC: silty clay, cL: clay

loam, C: clay.

defined the characteristic long range distance variable
Ry, as the distance where R, ,(r) first reached 0.02.

3. Materials and methods
3.1. Samples

We obtained 36 undisturbed Gila silt loam soil
samples from an irrigated field in Coachella Valley,
California. The samples were collected from the
topsoil and were 12 cm long and 12 cm in diameter.
The saturated hydraulic conductivity (K;) was
measured with the constant head method using
water having the same chemical composition as
used for irrigation of the field. The measurements
were repeated until a constant K was found for each
sample. In order to compute k from K (Eq. (1)) we
used g=981ms % p=998kgm !, and n=
1.002x 10 kgm ' s "

After determination of the bulk density, the cores
were split vertically. One half was used for determin-
ing the particle size distribution (given in Fig. 2) and
the particle density. The other half was used to prepare
thin sections by impregnating the soil with epoxy

(EPO-TEK 301, Epoxy technology, Billerica, MA)".
A horizontally oriented 3.5 X 2.5 cm section was cut
from the hardened sample (i.e. the section was perpen-
dicular to the water flow direction during the K;
measurements) and mounted on a glass slide. A thin
section of approximately 35 pum thickness was sub-
sequently prepared using diamond polishers, thereby
avoiding chemical contamination. We did not cover
the thin sections with glass plates since this would
interfere with the SEM measurements.

3.2. SEM technique

An AMRAY 3200 (AMRAY Inc., Bedford, MA)
scanning electron microscope with a backscatter
electron detector was used to obtain images of the
thin sections. This technique requires no metal coating
of the samples because the low vacuum ensures the
removal of surface charge buildup. Images were
obtained at a magnification of 50 and a resolution of
1024 x 800 pixels with a 16-bit numerical resolution.
The magnification was chosen to obtain a reasonable

' Trade names are provided for the benefit of the reader and do not
imply endorsement by the USDA.
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sample area for which the correlation functions were
expected to capture most or all relevant spatial
information. The corresponding resolution was
1.88 wm pixel ', which is better than the 7 wm
obtained by Lebron et al. (1999) who used commer-
cial image analysis software. The capillary law shows
that the resolution adequately resolved pores with
radii of 4.5 pm that correspond to the effective poros-
ity at 33 kPa (Ahuja et al., 1984). Each image covered
an area of approximately 2.9 mm®. We retrieved 10
images from most thin sections; on a few occasions
instrumental difficulties limited this number, resulting
in 340 images for 36 samples totaling 600 MB of data.

3.3. Selection of threshold gray value

Histograms of the images were compiled by sorting
the gray values in 256 classes as demonstrated in Fig. 1
for two soils. The left hand peak of soil 1 is caused by
the epoxy resin (pore space), while the right hand peak
represents the particle space. The minimum between
the peaks indicates the position of a threshold gray
value (method 1). The peaks are not well resolved
for soil 2, which makes the identification of a thresh-
old value more difficult. In this case we determined
the threshold using the inflection point of the
histogram (method 2). We obtained 265 thresholds
with method 1 and 55 with method 2. Twenty images
and one sample were not considered for further
analyses because of erratic histograms or underexpo-
sures. This resulted in 35 samples and 320 images for
further analyses.

3.4. Method of data analysis

The Ahuja and Berryman variants of the K—C
equation (Eq. (5) and (6), respectively) were fitted
directly to the measured permeabilities. This yielded
estimates of the parameters A and B in Ahuja’s model,
and the parameter m in Berryman’s model (Eq. (8)).
The optimizations were performed on log k data to
avoid a bias towards samples with high permeabil-
ities. The model results were evaluated with coeffi-
cients of determination (Rz) and root mean square
errors (RMSE), the latter given by

RMSE =[S (log k — log k')/N (22)

where N is the number of samples (35) and &k and k' are

the measured and predicted permeabilities, respec-
tively. Because we used logarithms of k, the RMSE
values have no units. The R* and RMSE values were
calculated for permeabilities based on average ¢,
(Ahuja model) or Ry, (Berryman and general models)
for each thin section. Error propagation rules allowed
us to assign error bars for individual predictions of &
using standard deviations computed for ¢, and Ry, for
each thin section.

In the case of the general K—C equation (Eq. (9)),
we first needed estimates of C before this parameter
could be correlated to microscopic and macroscopic
data. To this end, we computed log C for each sample
from the difference between the logarithms of
predicted and measured permeabilities (cf. Eq. (9))
according to

log C = log(¢,R3,) — log k (23)

To investigate the correlation structure between log
C and other variables we first computed a Spearman
rank correlation matrix. Spearman rank correlations
were chosen over linear correlations to allow for the
possibility of non-normal distributions. The correla-
tion matrix was subsequently used to identify poten-
tial macroscopic and microscopic predictors of C.
Macroscopic predictors consisted of percentages
sand, silt, and clay, bulk density (BD), particle density
(ps), and porosity (¢), the latter was computed as:
¢ =1 — BD/p,. Potential microscopic predictors of
C included ¢, s, Ry, Ry, R., Ry, and B.

Three different strategies were tested to predict C:
macroscopic data only, microscopic data only, and a
combination of both. Predictions of C were obtained
using a combination of artificial neural networks
(ANN) and the bootstrap method. Artificial neural
networks were chosen because they excel in finding
patterns in multivariate data. The bootstrap method
(Efron and Tibshirani, 1993) was used to estimate
the uncertainty in predicted C. Combining neural
networks with the bootstrap method also avoided
overfitting problems (cf. Haykin, 1994 p 176) that
may occur in small data sets such as those used in
our study. We refer to Schaap and Leij (1998) and
Schaap et al. (1999) for more elaborate descriptions
of ANNs and the bootstrap method.

In terms of practical applicability it is preferable to
predict ¢,, and s from easily measurable macroscopic
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Fig. 3. Examples of SEM images and corresponding correlation functions for a sandy loam (sL) and a silt loam (siL). The solid curves give the
correlation functions for the void space, the dashed lines provide the correlations for the particle space. The apparent porosity (¢,) and specific

surface (s) area are also listed.

variables instead of measuring them with SEM. We
therefore developed models that predicted these
parameters, as well as C, from macroscopic variables.
The resulting models still assume that the physical
background of the K—C relation is valid (Eq. (9)).
We will compare these models with a fully empirical
version that predicts k directly from macroscopic
parameters without first predicting C, ¢,, and s.

4. Results

4.1. Correlation functions, apparent porosity and
surface area

Fig. 3 gives typical examples of the normalized
correlation functions (Eq. (13)) for void and particle
space for a sandy loam and a silt loam (indicated by
the large dots in Fig. 2). The images corresponding to
these correlation functions are also shown. The appar-
ent porosities were different (0.41 and 0.20 for the
sandy loam and silt loam, respectively). However,
the surface area’s were similar (0.16 vs. 0.19 pﬁmfl).
The small difference is probably related to the low

porosity of the silt loam, which left its small pores
unresolved. The resulting hydraulic radii were 2.61
and 1.04 pm for the sandy loam and silt loam, respec-
tively. Up until a distance of 60 wm, the correlations
for the void (solid line) and particle spaces (dashed
lines) of the sandy loam were higher than those for the
silt loam. The correlation function for the void space
of the sandy loam reached zero at 150 wm, while the
silt loam reached zero correlation at 330 wm. The
particle and void correlation functions closely
resembled each other between 0 and 60 pum but
diverged after this distance. The correlation function
for the particle space of the sandy loam remained
positive until 550 wm, whereas the correlation for
the silt loam did not reach a zero correlation within
750 wm. Note that the correlations of the void space
were not exactly zero at longer distances, but
alternated between small negative and positive values.
These and similar findings in other images indicate
that both particle and void space exhibit long range
correlation structures which are probably due to
aggregation of soil particles and simultaneous
exclusion of larger pores. However, results for the
long-range correlation distance (R;) for pore and
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Fig. 4. Distribution of the apparent porosity (¢,) versus measured porosity (¢). The error bars denote one standard deviation.

particle space varied strongly among images from the
same thin section. This casts doubt that R can provide
useful information about the long-range structure of
the void or particle space. We tried several other
approaches to characterize the long-range structure,
but were unsuccessful thus far.

Fig. 4 shows that ¢, was always smaller than the
total porosity. No significant correlation was found
between ¢, and ¢ (see also Table 1). Because no
large (millimeter sized) pores were present in our
samples, these data suggest that a relatively large
amount of pore volume is locked up in pores smaller
than the detection limit (1.88 wm). The error bars in
Fig. 4 denote one standard deviation errors and
indicate that thin sections of some samples had a
considerable variation in ¢, The average standard
error of ¢, was 0.020 cm® cm 3, the average coeffi-
cient of variation was 7.4%.

Fig. 5 shows a plot of the surface area, s, versus
apparent porosity, ¢,, for all 320 SEM images. The
average surface areas for each sample are indicated
with the squares and corresponding error bars (one
standard deviation). All samples had surface areas
smaller than the maximum given by Eq. (17) as
depicted by their position under the parabola. This
indicates that the void pixels had a considerable
amount of order. The images with the smallest ¢,
had positions closest to the parabola and thus have
the highest degree of ‘randomness’ in pixel distribu-
tion (cf. Eq. (17)). There was an almost linear increase
in surface area until ¢, = 0.3, suggesting a more or
less constant hydraulic radius (Eq. (18)). Beyond
¢, = 0.3 the surface area appears to decrease, result-
ing in larger hydraulic radii and increased order. It is

presently unknown whether the maximum at ¢, = 0.3
is a characteristic of the studied soil series or reflects
the fact that higher porosities require more order to
keep the pore-particle structure stable. The standard
error in s was 0.013 m ™', while the average coefficient
of variation was 6.5%.

4.2. Evaluation of Kozeny—Carman models

Optimization of the Ahuja model (Eq. (5)) to
measured log k yielded log(A) = —11.185 and B =
4231 with a coefficient of determination (R*) of
0.36 and an RMSE of 0.58 m?> (Table 2). When we
used total porosity instead of apparent porosity, we
obtained an R? of 0.13. Fig. 6 shows predictions of

Table 1

Spearman rank correlations between parameters in the K-C equa-
tions (horizontal) and potential macroscopic and microscopic
predictors of these parameters (vertical). The numbers in italics
denote significant correlations (at p < 0.05)

b, s Ry k F C
Clay —0.49 0.63 —0.73 —0.84 0.71 0.65
Silt —0.45 062 —0.70 —0.67 0.52 0.47
Sand 046 —0.66 0.72 0.71 —058 —0.53
Bulk d. 0.02 —-0.27 0.17 0.10 —-0.06 —0.09
Ps —0.42 044 —0.55 —0.58 0.42 0.34
[ —0.21 046 —042 —0.35 0.20 0.20
[N 1.00 —-0.21 0.79 0.65 —0.35 —0.12
K —0.21 1.00 -0.72 —0.60 0.38 0.34
Ryy 0.79 —0.72 1.00 0.80 —047 —0.31
Ry —-0.18 —0.89 0.39 035 -026 —032
R. 0.68 —0.82 0.98 0.80 —050 —0.35
R, —-0.04 —0.04 0.04 0.00 0.05 0.02
B 1.00 —0.21 0.79 0.65 —0.35 0.12
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Fig. 5. Distribution of the surface area (s) versus apparent porosity (¢,). The dots denote the surface area for each individual SEM image. The
squares represent the average surface area for each sample (with one standard deviation error bars). The triangle represents the maximum
possible surface area according to Eq. (16), while the parabola denoted the maximum surface area according to Eq. (17).

log k versus measured log k values as well as the one
standard deviation error bars of the predictions.
Although the Ahuja model may work well for some
soils (Messing, 1989; Ahuja et al., 1989; Schaap et al.,
1998), our results with this model are not as good as
those obtained with the other K—C variants, as will be
discussed later. Reasons for this may be the assump-

Table 2

tion that tortuosity and surface area should decrease
with some power of ¢, (Ahuja et al., 1989). While we
could not retrieve any direct information about the
tortuosity from our data, we notice from Fig. 5 that
a more complex relationship between s and ¢, may be
present.

For the Berryman model we obtained m = 2.76

Results for the three K—C model variants. The Ahuja and Berryman models are listed with all their input data, the input data for the general
model only pertain to C. In addition, measured ¢, and s are needed for this model. The RMSE values have no units because logarithmic values

were used
Input log(C) log(k)
R’ RMSE R’ RMSE
Ahuja b, - - 0.36 0.58
Berryman ba, s - - 0.57 0.48
General Model
Macroscopic input Silt, Clay 0.61 0.29 0.85 0.28
Silt, Clay, BD 0.71 0.26 0.87 0.25
Silt, Clay, ps 0.71 0.26 0.88 0.25
Silt, Clay, ¢ 0.68 0.27 0.87 0.26
Microscopic input s, R, 0.30 0.40 0.71 0.40
S 0.24 0.40 0.69 0.40
b, 0.12 0.43 0.65 0.43
R. 0.21 0.41 0.68 0.41
da s 0.33 0.38 0.72 0.38
Microscopic and Silt, Clay, s 0.64 0.28 0.85 0.28
macrocopic input
Silt, Clay,R. 0.67 0.26 0.87 0.26
Silt, Clay, ps, s 0.71 0.26 0.88 0.25
Silt, Clay, ps, R. 0.77 0.24 0.90 0.24
Silt, Clay, ps, ¢, s 0.81 0.23 0.91 0.23
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Fig. 6. Predictions of permeability by the Ahuja model (Eq. (5)) with one standard deviation errorbars.

with a corresponding R* of 0.57 and an RMSE of
0.48 m? (Table 2). Fig. 7 shows predictions of log k
are plotted versus measured log k values in Fig. 7 as
well as one standard deviation error bars of the predic-
tions. The value for m was found to be considerably
higher than those reported by Blair et al. (1996) who
listed F values that correspond to m values between
1.5 and 2. The data of Blair et al. (1996), however,
pertain to sandstones, not soils with a wide range of
textures. When the formation factor, F, is interpreted
in terms of Eq. (7) we obtain tortuosities between 1.24
and 12.7. While the lower value is reasonable, we
strongly doubt that the higher value can be solely
attributed to tortuosity. The formation factor F is
most likely influenced by other factors as well, such
as pore geometry and connectivity. Table 1 shows that
F exhibits only a weak Spearman rank correlation
(—0.35) with apparent porosity (cf. Eq. (7)) but a
much stronger correlation with texture, especially
clay content (0.71).

-1

In the case of the general model (Eq. (9)), we first
computed log C according to Eq. (23). Subsequently,
we computed the Spearman rank correlations between
C and macroscopic and microscopic variables. Notice
that C had smaller absolute rank correlations than k
for all the variables listed in Table 2. These reduced
correlations were to be expected because the term
d)aR}zW in Eq. (9) accounts for the K-C concepts
such as hydraulic radius and effective pore volume
while C accounts for the remaining media properties
such as tortuosity and connectivity. The strongest
correlations were found for texture, while minor
correlations were present for solid density, specific
surface area and the characteristic pore length R..
No significant relations were found for bulk density,
total porosity, the hydraulic radii Ry, and Ry,,, the long-
range radius Ry, and the void ratio 3.

Table 2 presents results of the ANN-bootstrap
analyses to predict C from the most promising predic-
tors in Table 1. When log C was predicted from

k= R2,/(2F)
.12 g

-13 4 {
144 i

-15 o

Predicted log k (m?)

1:1

-14

-13 -12 -1

Measured log k (m?)

Fig. 7. Predictions of permeability by the Berryman model (Eq. (6)) with one standard deviation errorbars.



198 M.G. Schaap, 1. Lebron / Journal of Hydrology 251 (2001) 186—201

1:1

-1
k = ¢.R?,/C

12
E
x
o -13
°
?
g 141
2
o
2 154

-16

-16 -15 -14

-13 -12 -1

Measured log k (mz)

Fig. 8. Predictions of permeability by the general model (Eq. (9)) using silt, clay, ps, ¢, and s as input (Table 2). The error bars denote one

standard deviation.

macroscopic variables, R? values between 0.61 and
0.68 were obtained, which in turn led to R? between
0.85 and 0.88 for logk. The textural variables
provided the most information, while bulk density,
particle density, or porosity increased the correlations
slightly. Models that used only microscopic variables
all showed poor correlations with log C as was already
clear from Table 1. The corresponding R” for log k
ranged between 0.65 and 0.72. A combination of
macroscopic and microscopic variables increased
the R for log k to the 0.85-0.91 range, while corre-
sponding RMSE values were slightly higher than
those of the macroscopic models. The best model
used silt and clay percentages, particle density, ¢,,
and s as input. This model is displayed in Fig. 8§,
which also shows the error bars generated with the
bootstrap method. However, we believe that not too
much physical meaning should be attributed to the
superiority of this model with respect to other macro-

Table 3

scopic variants because unknown systematic or
random errors in the small data set (35 samples)
may have provoked statistical artifacts.

Table 3 shows results of the model that predicted C,
as well as ¢,, and s from macroscopic variables. In
comparison with macroscopic results in Table 2, the
results are quite good. For example, the macroscopic
model in Table 2 that used clay, silt and p, to predict
C, but used measured ¢,, and s values, yielded an R*
of 0.88 for log k and an RMSE of 0.25. The macro-
scopic model in Table 3 that used the same input data
to predict C, ¢,, and s, yielded an R? of 0.87 and an
RMSE of 0.29. Texture (silt and clay percentages)
was the main factor that contributed to the prediction
of ¢,, s and C. Bulk density, p,, and ¢ contributed
only little, if any, information. These results indicate
that, ¢,, s and C can be estimated from macroscopic
variables without greatly deteriorating the predictions
of k.

Results Eq. (9) using predicted ¢,, s, and C to predict k (general model) and results for the direct prediction of & (fully empirical model)

Input b, s log(C) log(k)
R? RMSE R? RMSE R? RMSE R RMSE
General Model Silt, Clay 0.38 0.056 0.61 0.029 0.62 0.29 0.81 0.32
Silt, Clay, BD 0.41 0.056 0.61 0.029 0.66 0.28 0.85 0.31
Silt, Clay, ps 0.49 0.053 0.62 0.029 0.69 0.26 0.87 0.29
Silt, Clay, ¢ 0.39 0.056 0.59 0.029 0.64 0.28 0.84 0.31
Fully empirical model Silt, Clay - - - - - - 0.81 0.32
Silt, Clay, BD - - - - - - 0.83 0.30
Silt, Clay, ps - - - - - - 0.84 0.32
Silt, Clay, ¢ - - - - - - 0.80 0.33
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A fully empirical prediction of k (i.e. by a model
that predicts log k directly and does not use K-C
concepts), yielded an R* of 0.84 and an RMSE of
0.32. These results indicate that models that impose
physical constraints on relationships among variables
perform equal or better than fully empirical models
that are not subject to such constraints. The results of
the fully empirical model further provide indirect
evidence of the validity of the K—C approach because
such a model would probably have shown better
results if the K-C approach were invalid. The
transparency of predictions of permeability may thus
be greatly enhanced by using K—C concepts supple-
mented by a textural or soil dependent factor C and
estimated ¢, s.

5. Summary and conclusions

In this study we used porosities and surface area’s
derived from SEM images of thin sections to test three
Kozeny—Carman models for prediction of the perme-
ability. We found that the simplifications made by
Ahuja et al. (1984) and Berryman and Blair (1987)
were not as effective in predicting k as a more general
approach that lumped the effects of pore tortuosity,
connectivity and geometry into one empirical
parameter, C. We showed that C is predominantly
related to texture and leads to better predictions of k
with R? values between 0.85 and 0.91, depending
upon inclusion of additional predictors. This model
still used surface area and apparent porosity that
need to be derived from thin sections. We showed
that the microscopic surface area and apparent poros-
ity could be predicted from texture, leading to an only
slightly reduced model effectiveness. While this
model required only macroscopic data to predict
permeability in a semi physical way, development
of this model would not have been possible without
microscopic information. A completely empirical
model that predicted the permeability directly did
not yield better results, indicating that the general
K-C model makes efficient use of the available
information.

Our current data set was relatively small and
limited to only one series of homogeneous soils.
More measurements of ¢,, s, and other microscopic
variables are needed in order to cover a wider range of

soils and expand the models towards general
applicability. Furthermore, our study was limited to
only one magnification (50); additional measurements
involving other magnifications may yield more
information about possible relationships among
microscopic and macroscopic variables. Some scale
issues may also need to be resolved because, unlike
the soils in this study, many soils are inhomogeneous
and may exhibit structure that extends beyond the
scale that we were able to observe with SEM. It
should be interesting to expand our current work to
include water retention and the unsaturated hydraulic
conductivity.
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Appendix A

Although the formulation of R, (u,v) (Eq. (11)) is
relatively simple, its calculation requires more than
10" multiplications for images in the order of 10°
pixels. The computation time can be reduced from
hours to minutes (on Pentium PC’s) by carrying
out the correlation in the frequency domain using
two-dimensional Fast Fourier Transforms (Berry-
man, 1985; Press et al., 1988). In order for the
correlation to work properly, it is necessary to
perform the transform on an image that is twice
the size in both the x and y directions using ‘zero
padding’ (cf. Press et al., 1988). Also, the Fast
Fourier Transform will only work correctly on
Xmax and ypm., that are powers of two (Press et al.,
1988). We therefore expanded the binary version of
the original 1024 X 800 pixel image to 2048 X 2048
pixels by adding zeros. Total computer memory
requirements were approximately 32 MB of RAM.
Representations of Z(x,y) in the frequency domain
were obtained with a two-dimensional Fast Fourier
Transform

Zi(feofy) = FFTL[Z(x, y)] (AL)

where f; and f, are the frequencies in the x and y
directions, respectively. Subsequently, Z; was
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multiplied with its complex conjugate Z; for each f,
and f,

Cofoly) = Zifo Zi (fiufy) (A2)

The correlation matrix R,(u#,v) then follows from
the inverse Fourier transform

IFFT,[C(f,. /)]

(xmax - u)(ymax =)

R.(u,v) = (A3)

where the denominator represents a normalization for
the number of points pertaining to a particular
combination of u and v.

References

Adler, P.M., Jacquin, C.G., Thovert, J-F., 1992. The formation
factor of reconstructed porous media. Water Resour. Res. 28
(6), 1571-1576.

Ahuja, L.R., Naney, J.W., Green, R.E., Nielsen, D.R., 1984. Macro-
porosity to characterize spatial variability of hydraulic conduc-
tivity and effects of land management. Soil Sci. Soc. Am. J. 48,
699-702.

Ahuja, L.R., Cassel, D.K., Bruce, R.R., Barnes, B.B., 1989. Evalua-
tion of spatial distribution of hydraulic conductivity using effec-
tive porosity data. Soil Sci. 148, 404—411.

Arya, L.M., Paris, J.F., 1981. A physico-empirical model to predict
the soil moisture characteristic from particle-size distribution
and bulk density data. Soil Sci. Soc. Am. J. 45, 1023-1030.

Arya, L.M., Leij, F.J., van Genuchten, M.Th., Shouse, P.J., 1999a.
Scaling parameter to predict the soil water characteristic from
particle-size distribution data. Soil Sci. Soc. Am. J. 63,
510-519.

Arya, L.M., Leij, F.J., Shouse, P.J., 1999b. Relationship between
the hydraulic conductivity function and the particle-size distri-
bution. Soil Sci. Soc. Am. J. 63, 1063-1070.

Bear, J., 1972. Dynamics of fluids in porous media. American Else-
vier, New York 764 p..

Berryman, J.G., 1985. Measurement of spatial correlation functions
using image processing techniques. J. Appl. Phys. 57 (7), 2374—
2384.

Berryman, J.G., Blair, S.C., 1986. Use of digital image analysis to
estimate fluid permeability of porous materials:Application of
two-point correlation functions. J. Appl. Phys. 60 (6), 1930—
1938.

Berryman, J.G., Blair, S.C., 1987. Kozeny-Carman relations and
image processing methods for estimating Darcy’s constant. J.
Appl. Phys. 62 (6), 2221-2228.

Blair, S.C., Berge, P.A., Berryman, J.G., 1996. Using two-point
correlation functions to characterize microgeometry and esti-
mate permeabilities of sandstones and porous glass. J. Geophys.
Res. 101 (BY), 20,359-20,375.

Bouma, J., Jongerius, A., Schoonderbeek, D., 1979. Calculation
of saturated hydraulic conductivity of some pedal clay soils

using micromorphometric data. Soil Sci. Soc. Am. J. 43,
261-264.

Carman, P.C., 1939. Permeability of saturated sands soils and clays.
J. Agric. Sci. 29, 262-273.

Dullien, F.A.L., 1992. Porous Media: Fluid Transport and Pore
Structure. . 2nd edAcademic Press, San Diego 574 p..

Efron, B., Tibshirani, R.J., 1993. An Introduction to the Bootstrap.
Monographs on Statistics and Applied Probability. Chapman
and Hall, New York.

Haverkamp, R., Parlange, J.Y., 1986. Predicting the water-retention
curve from particle size distribution. 1. Sandy soils without
organic matter. Soil Sci. 142, 325-339.

Haykin, S., 1994. Neural Networks, A Comprehensive Foundation. .
1st edMacmillan College Publishing Company, New York 696 p..

Hillel, D., 1998. Environmental Soil Physics. Academic Press, San
Diego 771 p..

Lebron, I., Schaap, M.G., Suarez, D.L., 1999. Saturated hydraulic
conductivity prediction from microscopic pore geometry
measurements and neural network analysis. Water Resour.
Res. 35, 3149-3158.

Messing, 1., 1989. Estimation of the saturated hydraulic conductiv-
ity in clay soils from soil moisture retention data. Soil Sci. Am.
J. 53, 665-668.

Montemagno, C.D., Ma, Y., 1999. Measurement of interfacial
surface areas for two-phase flow in porous media from PVI
data. In: van Genuchten, M.Th., Leij, F.J., Wu, L. (Eds.).
Proceedings of the International Workshop, Characterization
and Measurements of the Hydraulic Properties of Unsaturated
Porous Media. University of California Press, Riverside, pp.
121-132.

Mualem, Y., 1976. A new model predicting the hydraulic conduc-
tivity of unsaturated porous media. Water Resour. Res. 12, 513—
522.

Or, D., Tuller, M., 1999. Liquid retention and interfacial area in
variably saturated porous media: upscaling from single-pore to
sample scale model. Water Resour. Res. 35, 3591-3605.

Or, D., Tuller, M., 2000. Flow in unsaturated fractured porous
media: hydraulic conductivity of rough surfaces. Water Resour.
Res. 36, 1165-1177.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.,
1988. Numerical Recipes in C. . 1st edCambridge University
Press, New York.

Quiblier, J.A., 1984. A new three-dimensional modeling technique
for studying porous media. J. Colloid Interface Sci. 98, 84—
102.

Schaap, M.G., Leij, F.J., 1998. Database related accuracy and
uncertainty of pedotransfer functions. Soil Sci. 163, 765-779.

Schaap, M.G., Leij, F.J., van Genuchten, M.Th., 1998. Neural
network analysis for Hierachical prediction of soil hydraulic
properties. Soil Sci. Soc. Am. J. 62, 847-855.

Schaap, M.G., Leij, F.J., van Genuchten, M.Th., 1999. A boot-
strap-neural network approach to predict soil hydraulic para-
meters. In: van Genuchten, M.Th., Leij, F.J., Wu, L. (Eds.).
Proceedings of the International Workshop, Characterization
and Measurements of the Hydraulic Properties of Unsaturated
Porous Media. University of California Press, Riverside, pp.
1237-1250.



M.G. Schaap, 1. Lebron / Journal of Hydrology 251 (2001) 186—201 201

Schlueter, E.M., 1995. Predicting the transport properties of
sedimentary rochs from microstructure. Ph.D. thesis, Lawrence
Berkely Laboratory/University of California, Berkely, Berkely,
California.

Tuller, M., Or, D., Dudley, L.M., 1999. Adsorption and capillary
condensation in porous media: liquid retention and interfacial
configurations in angular pores. Water Resour. Res. 35, 1949—
1964.

Vogel, H.J., 1997. Morphological determination of pore connectiv-
ity as a function of pore size using serial sections. Eur. J. Soil
Sci. 48, 365-377.

Vogel, H.J., Roth, K., 1998. A new approach for determining effec-
tive soil hydraulic functions. Eur. J. Soil Sci. 49, 547-556.
Walsh, J.B., Brace, W.F., 1984. The effect of pressure on porosity
and the transport properties of rock. J. Geophys. Res. 89 (B11),

9425-9431.



